

Reliability and Resilience Webinar Series Topic One Part Two: Remedial Action Scheme Design, Coordination and Modeling

> Emily Barrett, Xiaoyuan Fan, Juan Carlos Bedoya, Marcelo Elizondo

PNNL is operated by Battelle for the U.S. Department of Energy

Support and funding for this work provided by: U.S. Department of State Bureau of Energy Resources Power Sector Program

- The U.S. Department of State, Bureau of Energy Resources, Power Sector Program (PSP) provides technical and regulatory support to the Central American regional electricity market.
- Under the PSP, Pacific Northwest National Laboratory delivers technical and analytic support to Ente Operador Regional (EOR, the Central American regional system operator).

Presentation Outline

Part 1 (April 14th, 2021)

- Introduction
- Standards and Practices in North America
- Overview of RAS Design Principles
- Coordination and Review Process Example from North America

Part 2 (April 21st, 2021)

- Questions from the Part 1
- RAS Modeling Approaches for Operational Security Studies
- Deep Dive on RAS Modeling in PSS/E
- Ideas for Applications to Central America

- Standards and Practices in North America
- Overview of RAS Design Principles
- Coordination and Review Process Example from North America

Questions from RAS Session 1

- Regarding the technical criteria used, are they consistent throughout the USA or are different criteria used to design and coordinate RAS? - Emily
- If there are different criteria, how do you reach consensus or agreement to know which ones to apply when the RAS involves areas with different criteria? - Emily
- How are technical controversies resolved between areas when an associated RAS does not have the performance or effects that are desirable for all? - Emily
- How much time, on average, does it take in the USA to design, coordinate, test and implement a RAS? - Xiaoyuan
- Can the evaluation of the performance of the RAS (ECS), be evaluated before 5 years? For example, if it is evident that in the face of contingencies it has a conflict with other RAS or its effects and parameters of its adjustments are not adequate with the characteristics that occur in the events or contingencies that it intends to mitigate? - Juan Carlos
- Are RAS audits performed? Answered in Part 1
- Who makes up the RAS entity? Answered in Part 1

Questions from RAS Session 1

- What are the most appropriate communication protocols or standards used in the North American system for ECS data acquisition? - Xiaoyuan
- When does a RAS become unnecessary? Can they be eternal or should planning evaluate an alternate solution in the long term? - Emily
- Who approves the scheduled maintenance of elements that are part of a RAS? Xiaoyuan
- Who absorbs the cost of a RAS in the event that it is requested by an RC or RAS entity? -Xiaoyuan, Juan Carlos
- How often are full tests of RAS performed and how are they coordinated when involving multiple areas? - Juan Carlos
- Are systemic protection schemes part of RAS, considering that the monitored variables are located in different geographic areas? - Juan Carlos

Additional resources:

Western Interconnection RAS Review: https://www.wecc.org/Reliability/Western%20Interconnection%20RAS%20Review%20Guideline.pdf Reliability Coordinator and Planning Coordinator NERC Reliability Standard PRC-012-2 Process Document for Eastern Interconnect: https://www.spp.org/documents/62226/spp%20prc-012-2%20process%20ei.pdf

RAS Modeling Approaches for Operational Security Studies

Pacific

Some Common Approaches for Modeling RAS in Contingency Analysis

- Manually: Engineer manually applies the remedial action that they know will occur based on contingencies and conditions in the base case.
- When analyzing results: Based on previous studies and engineering experience, filter out any results of contingency studies that would be resolved by RAS.
- Using custom scripts: Engineer automates one or both of the previous processes using custom code.
- Using contingency definitions in a power flow solver: Using filters and conditional contingency actions, implement RAS as custom contingency.

Manual Application of RAS: Pros & Cons

Advantages

- Does not require additional software or computer-readable models
- May support both transient and steady state models

- Time-intensive
- Introduces additional opportunities for human error
- Difficult to do for complex RAS
- Reproducibility
- Knowledge transfer

Result Filtering: Pros & Cons

Advantages

- Does not require additional software or computer-readable models
- May support both transient and steady state models

- Time-intensive
- Introduces additional opportunities for human error
- Difficult to do for complex RAS
- Reproducibility
- Knowledge transfer
- As the system changes over time, studies may not catch if RAS no longer mitigates all violations

Custom Scripts: Pros & Cons

Advantages

- Faster than manual approaches
- Better reproducibility than manual approaches
- May support both transient and steady state models

- Difficult to do for complex RAS
- Scripts must be maintained
- For scripts that do result filtering, similar problems arise around verifying that the RAS continues to resolve all violations as the system changes over time

Using Custom Contingencies: Pros & Cons

Advantages

- Faster than manual approaches
- Better reproducibility than manual approaches
- Easier to maintain than custom scripts
- Where standards exist and common tools are used, can be shared with other entities

- Contingency definitions can be complex
- Requires training and/or knowledge of how to define custom conditional contingency and filters
- More difficult to do in transient stability studies

Survey of Practices for Modeling RAS in WECC

In 2017, PNNL conducted a survey among several WECC transmission operators to collect the following information on RAS and RAS modeling in the region:

- **Software** The type of software used to perform power system analysis.
- **Objective** The purpose of the RAS, specifically what the RAS is intended to protect against.
- **Remedial Actions** The corrective actions taken.
- **Arming Criteria** The monitored topology or system conditions used to set the arming levels for RAS implementation.
- **Initiating Conditions** The monitored topology or system conditions that trigger the RAS to operate.
- Modeling Method How the RAS is modeled in the software, including whether the RAS leverages existing software tools and whether transient analysis is performed.

Survey Results: RAS Objectives

- Prevent loss of synchronism
- Prevent line or transformer overloading
- Prevent generator damage
- Maintain voltage stability

Survey Results: Arming Criteria

- Measured generation output
- Path flows
- Line or transformer flows
- Bus voltage

Survey Results: Triggering Criteria

- Line loss logic
- Generator acceleration
- Time elapsed since meeting arming criteria

Survey Results: Remedial Actions

- Trip generator(s) offline
- Remove lines or transformers from service
- Reduce generation output
- Reconfigure shunt and series reactive power devices

Survey Results: Modeling Tools

19

Survey Results: Modeling Approaches

	PowerWorld	PSS®E	
Steady-State Power Flow	Most commonly modeled in WECC RAS & CTG format using built-in RAS tools	Most commonly manually implemented	Not c stead
Transient Stability	Most commonly included in contingency definition	Most commonly custom scripts are used	Most incluc contir often EPCL

PSLF

commonly used for dy-state studies

t commonly ided in the ingency definition, with a custom

The Motivation for RAS Standardization in WECC

- 2011 San Diego blackout
 - Following the 2011 blackout, attention increased to studying RAS operation and understanding how RAS interact
- Need to incorporate RAS models into reliability studies
 - There are hundreds of RAS in WECC
 - Some RAS span multiple regions and impact multiple operating entities

Modeling Approaches Leveraged in WECC

- Use advanced filters to identify if arming and triggering criteria are met (e.g., line flow > a prescribed threshold or limit)
- Define **conditional contingencies** which will point to advanced filters and apply contingencies/take actions if filter criteria are met
- Model generation drop using injection group contingency actions and disconnecting generators in merit order based on defined criteria
- Include defined conditional contingencies, which represent RAS actions, in operational security analyses
- WECC developed standards around the contingency definition and formats for RAS so that these files can be shared across the region

Additional Resources

- Modeling of RAS and Relays in Power Flow Contingency Analysis: https://www.powerworld.com/files/09WeberRAS_Features.pdf
- Modeling of Remedial Action Schemes and Relays in Power Flow Simulations: https://www.wecc.org/Reliability/RAS%20Modeling%20Webinar%20Presentati on%204-2-2015.pdf
- Record Specification and File Format for Specifying Contingency Definitions and Remedial Action Schemes: https://www.wecc.org/Reliability/WECC_RASFileFormat_08-28-2015.pdf

Survey of Central America RAS Survey Results

- Received 5 responses
- Number of RAS: Ranged from 0-33
- **Review Period:** Ranged from annual revision, six-months, to when changes in the system occur or RAS operation occurs.
- **RAS Modeling:** 2 include RAS in operational security studies
 - I entity uses PSS/E and python
 - I entity uses DSAT
- Software limitations:
 - PSS/E version
 - Line tripping in PSS/E based on frequency limit violations

Deep dive on RAS modeling in PSS/E

Review RAS Modeling in Commercial Software

- WECC distributed a questionnaire in 2013 to the Transmission Planners (TP), in which it also collected the modeling practice for RAS.
- IEEE Power System Relaying Committee (PSRC) completed a survey from 2005 to 2009, through the Load Shedding, collective efforts with CIGRE and EPRI members.

Generation

31%

Others, 5%

Control - Slow Speed, 21%

[*] WECC Technical Studies Subcommittee white paper, "Remedial Action Scheme (RAS) Modeling Value Proposition", approved and published on May 2, 2014. [**] V. Madani et al., "IEEE PSRC Report on Global Industry Experiences With System Integrity Protection Schemes (SIPS)," in IEEE Trans.on Power Delivery, vol. 25, no. 4, pp. 2143-2155, Oct. 2010.

Reference RAS Example in PSS/E

- Different commercial software have their own implementation and procedures for RAS modeling, including but not limited to, user interface function, customized coding API, interactive graphical portal, and so on.
- EOR and many Central American utility companies use PSS/E in transmission planning studies.
- For example, PSS/E V33.12 provides the capability of Python-based RAS API, and one testing example in the software package.
 - Python package "PSSRAS"
 - Flexible definition for customized RAS
 - Condition
 - > Action
 - RAS definition (name)
 - Simulated within the PSS/E ACCC activities

[*] Siemens, PSS/E Advanced Contingency Analysis and RAS Module document, available online: https://assets.new.siemens.com/siemens/assets/api/uuid:13592114fa75914812edf89f7ed6f8849b23d63e/psse-advcontingencyanalysisandras-module-flyer.pdf

Modeling RAS in Steady-state Planning Study

- In power system steady-state planning study, power flow modification and control actions can be performed in an offline style, such as manual/code-based modification after N-1 contingency analysis.
 - In operational environment, if a RAS is not automated, the grid operator/dispatcher must watch the line flows and outage conditions, then arm and/or trigger the appropriate RAS
- PSS/E supports RAS definition and implementation in its contingency analysis

- Time domain simulation usually will be performed to analyze the transient stability analysis in system planning; customized user defined model could be created and used in PSS/E to be executed within the time domain simulation.
- New software model/package in future software release
- For utility members in U.S. Western Interconnection, the RAS models in PSLF and DSATools can be activated in the time domain simulation.

[*] H. Zhang, S. Kincic and F. Howell, "Monitoring Bulk Electric System IROLs and RAS Operation by the Online Transient Stability Analysis Tool: Peak RC's Practice and Lessons Learned," 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 2020, pp. 1-5.

[**] S. Kincic, H. Zhang and H. Yuan, "Implementation of Real-time Transient Stability for the Western Interconnection," 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 2019, pp. 1-5.

Transient Stability

RAS model validation with DSATools [**]

29

Modeling Multiple RAS in System-level Planning Studies S-Line RAS [*]

- PNNL's Dynamic Contingency Analysis Tool (DCAT)
 - 2011 WECC Heavy Summer Operating Case
 - All dynamic models in WECC Master Dynamics File (MDF)
 - 7000+ Additional protective relays [*] [**], and RAS [*]
 - New Composite Load data created by PNNL's Load Model Data Tool (LMDT)
- A sequence of cascading failure simulated in DCAT
 - Protection model response (Protection relay, RAS)
 - Power flow condition at major observation points (transmission path, substation)
- Intermediate/Post-event power flow condition

Cond.#: 1 Filter Obj. Type: interface Obi. Field: mw Value: 289 Condition Type: > Other Value:

Cond.#: 1 Filter Obj. Type: interface Obj. Field: mw /alue: 269 Condition Type: > Other Value:

Substation

Type: Trip Setting

Type:

Trip Setting

[*] "Arizona-Southern California outages on September 8, 2011", Prepared by the staffs of the FERC and the NERC, April 2012. [**] X. Fan et al., "Bulk Electric System Protection Model Demonstration with 2011 Southwest Blackout in DCAT," 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2020, pp. 1-5.

Protection Relay [*]

2011 Protection Relay at Coachella

Time Overcurrent Relay

191 MVA. 127% of transformer normal rating

2011 Protection Relay at Area 21 **IMPERIALCA**, northern 92 kV

Distribution under-voltage load shedding protection

444 MW load tripped in IID

Modeling Multiple RAS in System Blackout Event

DCAT evaluation of WECC Path 44 for 2011 Pacific Southwest Blackout, (a) Path flow plot provided in NERC Report [*], (b) Simulated path flow in PNNL DCAT analysis [**] (full protection actions sequence automation)

[*] "Arizona-Southern California outages on September 8, 2011", Prepared by the staffs of the FERC and the NERC, April 2012. 31 [**] X. Fan et al., "Bulk Electric System Protection Model Demonstration with 2011 Southwest Blackout in DCAT," 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2020, pp. 1-5.

RAS Performance Evaluation

- RAS performance depends on a variety of technical and engineering design.
 - a) Power system equipment control logic [*]
 - Parallel controller implementation [**] b)
 - Primary/alternative communication paths [**] C)
 - other embedded design [***] d)

[*] Vyakaranam B., et al. 2019. Dynamic Contingency Analysis Tool 2.0 User Manual with Test System Examples. PNNL-29105. Richland, WA: Pacific Northwest National Laboratory. [**] V. Madani et al., "IEEE PSRC Report on Global Industry Experiences With System Integrity Protection Schemes (SIPS)," in IEEE Trans.on Power Delivery, vol. 25, no. 4, pp. 2143-2155, Oct. 2010. "IEEE Guide for Engineering, Implementation, and Management of System Integrity Protection Schemes," in IEEE Std C37.250-2020, pp.1-71, 17 June 2020, doi: 10.1109/IEEESTD.2020.9120373.

High

Low)

a) Block unnecessary operation when a failure occurs

b) Series components

c) Adoption of automatic

RAS Model Data Standards

- WECC defined a Common RAS Model format, all major grid software vendors have adopted or been implementing RAS functions based on this.
- WECC Common RAS Model Format
 - RemedialAction
 - RemedialActionElement
 - ModelFilter
 - ModelFilterCondition
 - ModelCondition
 - ModelCondition Details
 - ModelExpression

No. 1. DAGN		"NO"				Exam
"Cowboy RAS"		"NO"				
"Viking RAS" "Dolphin-Raider						
"Viking-Dolphin						
"Viking-Dolphin }						
RemedialActionE						on, Criteria, nclusionFilter
"Cowboy RAS"	"GEN 31 1"	'OPEN'	" "OPE	N Cowk	boy G1"	"TOPOLOGYCH
"Viking RAS"					-	
"Dolphin-Raider	RAS" "GEN 28	8 1" '	'OPEN"	"Dolp	ohin-Rai	der 1 138 kV L "TOPOLO
"Viking-Dolphin	1 Overload"	"BRAN	NCH 28	29 1'	"OPEN"	"Viking-Dolph "POSTCH
	2 Overload"	"BRAN	NCH 28	29 2'	"OPEN"	"Viking-Dolph "POSTCH
"Viking-Dolphin	2 Overroud					

ple for WECC Common **RAS Model Format** [*] , Comment) ECK" 0 Viking G1 and G2" GYCHECK" 0 "" "" ine" GYCHECK" 0 "" "" in 1 345/138 Over 135%" ECK" 0 "" "" in 2 345/138 Over 135%"

Ideas for Applications to Central America (Coordination Examples)

Pacific Northwest NATIONAL LABORATORY BEXISTING Collaboration in Central America and Mexico

- Regional technical working groups formed by EOR and 6 national OS/OMs collaborate on system disturbance analysis
 - Regional Technical Committees on Operational Security (CTSO) and on Protection (CTP) cover ECS
 - Analysis of ECS operation is part of the activities – if ECS maloperation is observed, preventive and corrective actions are adopted
 - Protection engineers collaborate with planning engineers
- EOR approves and can require new and modifications to ECS, as stated in RMER
- AMM, CENACE, and EOR also collaborate in technical topics related to Guatemala-Mexico interconnection

X. Fan et al., "Model Validation Study for Central American Regional Electrical Interconnected System," 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 2021

EOR's Regional Coordination of System Disturbance Analysis and Model Validation

1.	Gather regional measurements – EOR's and OS/OM's PMU and SCADA – EOR's state estimator			
2.	Assemble regional model with input from OS/OMs by CTSO			
3.	Dynamic model data from planning models			
4.	 Investigate sequence of events and protection actions – collaboration with OS/OM's planning and protection engineers through CTSO and CTP 			
5.	 Simulate events and compare with measurements – Model Validation – evaluate results with CTSO 			
6.	Iterate between 5 and 4 and if needed also with 3 and 2			
7.	EOR publish finalized disturbance event report			

Implementation of ECS review, testing, and verification procedures

- OS/OMs and EOR should consider adding more ECS review, testing, and verification procedures at the regional level and in collaboration with CENACE
- Regional technical working groups (CTSO and CTP) in Central America that currently analyze events and study ECS operation could be part of a regional ECS review committee, in charge of formally reviewing ECS and recommending approval
- Regional technical rules in Reglamento del Mercado Eléctrico Regional (RMER) may need to be amended – EOR regulatory affairs office can collaborate with CTSO and CTP
- AMM, CENACE, and EOR may collaborate for establishing review, testing, and verification on ECS that affect both Central America and Mexico – such as the EDALTIBV ECS in Guatemala-Mexico interconnection

Incorporating ECS models in PSS/E and in EMS models for real time contingency analysis

- ECS models in PSS/E
 - Adopt standard formats across all OS/OMs and EOR for ECS models ✓ PowerWorld, PSS/E, PSLF have implemented standardized formats
 - EOR and OS/OMs can collaborate on incorporating ECS models for the Central American regional system (SER)
 - ✓ Regional technical working groups can be leveraged
 - ✓ The existing experience in AMM (Guatemala) and CND-ETESA (Panama) can be very useful
- ECS models in Energy Management System (EMS) in control centers
 - Results from real-time contingency analysis applications in EMS can be affected significantly by ECS
 - ECS models should also be incorporated into EMS tools

Implementing ECS monitoring in control centers

- AMM monitors interarea oscillations that activate an ECS at Guatemala-Mexico interconnection [*]
- EOR, AMM, and CENACE may collaborate to determine other ECS that need monitoring at national or regional control centers
- Besides monitoring, system operators in North America also implement RAS arming functions based on real-time system conditions, such as in BC Hydro [**], and the Reliability Coordinators collect real-time arming information

[**] Yao, Ziwen, et al. "Forewarned is forearmed: An automated system for remedial action schemes." IEEE Power and Energy Magazine 12.3 (2014): 77-86.

Fig. 5. Synchrophasor data complement traditional SCADA

Figure from: [*] J.V. Espinoza, A. Guzman, F. Calero, M. Mynam, and E. Palma, "Wide-Area Measurement and Control Scheme Maintains Central America's Power System Stability" Wide-Area Protection and Control Systems, 2017

Coordination between Mexico, Guatemala, and EOR to model Mexico-Guatemala ECS

 Coordination of modeling practices to predict ECS action for planning and operation studies

Pacific

Northwest

- Updating and maintaining Mexico's equivalent representation for Central America
- Creating, updating, and maintaining Central America's equivalent representation for Mexico
- Incorporating ECS model into PSS/E and real-time models at CENACE, AMM, and EOR

Figure 4. Voltage comparison of bus MEX-1 for different Mexico equivalent models.

X. Fan et al., "Model Validation Study for Central American Regional Electrical Interconnected System," 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 2021

39

Upcoming Webinars

Resilience and Extreme Event Planning – May 12th and 19th, 2021

Transfer Capability and Coordinated Stability Studies – June 9th and 16th, 2021

Renewable Integration – July 14th, 2021

Final Session – August 18th, 2021

2021 h and 16th, 2021

Thank you!

Questions?

Marcelo Elizondo Pacific Northwest National Laboratory Richland, Washington, USA <u>Marcelo.Elizondo@pnnl.gov</u>

